تاریخ : شنبه 87/3/4 | 12:38 عصر | نویسنده : روح الامین
هذلولی
تعریف
هذلولی مجموعه نقاطی از صفحه است که تفاضل فواصل هر یک از آن ها از دو نقطه ی ثابت در صفحه مقدار ثابتی باشد.کاربرد
مسیر های هذلولوی در نظریه نسبیت اینشتین مطرح می شوند و اساس سیستم هوانوردی رادیویی لوران LORAN: Long Range Navigation - - نیز هستند. مسیر ستاره ی دنباله داری که به خورشید خودش بر نمی گردد، هذلولوی است ( احتمال اینکه سهموی باشد صفر است ).تلسکوپ های بازتابنده نظیر تلسکوپ 200 اینچی هاله 2 ، واقع در کوه
پالومار کالیفرنیا، و تلسکوپ فضایی ناسا که قرار بوده در 1988 به فضا
پرتاب شود، از آینه های هذلولوی کوچک، همراه با آینه های سهموی بزرگتر
استفاده می کنند.
معادله ی هذلولی
با در نظر گرفتن دو نقطه ی ثابت و موسوم به کانون ها و مقدار ثابت ، آن گاه نقطه ای چون بر هذلولی واقع است اگر و تنها اگر:یا
معادله ی دوم نظیر معادله ی اول می باشد، با این تفاوت که به جای ، قرار گرفته است. لذا می توان در اولی نوشت ، پس:
در این جا منفی است زیرا تفاضل دو ضلع مثلث از ضلع سوم کوچکتر است یعنی . لذا مثبت است و یک ریشه ی دوم حقیقی مثبت دارد که آن را با نمایش می دهند، پس:
بنابر این معادله ی هذلولی به صورت زیر خواهد بود:
که شبیه معادله ی بیضی است. اختلاف آن ها تنها در علامت منفی موجود در معادله ی هذلولی و رابطه ی جدید بین ، و است.
نکته 1: هذلولی نسبت به هر دو محور و نسبت به مبدا متقارن است و با محور تقاطعی ندارد. در واقع هیچ بخشی از خم بین خطوط و قرار نمی گیرد.
نکته 2: فاصله های و از روابط زیر به دست می آیند:
در این جا از بزرگتر است و یا در سمت راست خط قرار می گیرد (یعنی)، یا در سمت چپ خط ( یعنی).
نکته 3 : وقتی در سمت راست خط قرار داشته باشد رابطه ی و اگر در سمت چپ واقع باشد رابطه ی برقرار است.
مجانب ها
تعریف: اگر هم زمان با دور شدن نقطه ای چون ( واقع بر یک خم ) از مبدا مختصات، فاصله ی آن با خط ثابتی به سمت صفر میل کند، آن گاه چنین خطی را مجانب خم نامند.هذلولی دو مجانب دارد که عبارت اند از خط های .
چرا که عبارت سمت چپ معادله ی هذلولی را می توان تجزیه کرد و معادله را به صورت:
یا
نوشت.
الف) تحلیل معادله ی نشان می دهد که یکی از شاخه های خم در ربع اول قرار داشته و تا بی نهایت امتداد دارد. اگر نقطه ی واقع بر این شاخه رفته رفته از مبدا دور شود، و بی نهایت می شوند و عبارت سمت راست معادله ی به صفر نزدیک می شود. پس طرف چپ هم باید همین وضع را پیدا کند. در نتیجه:
ب) وقتی ، مشاهده می شود که:
چون فاصله ی قائم بین خط و هذلولی وقتی ، به صفر میل می کند، فاصله ی عمودی بین نقاط هذلولی و خط نیز به صفر میل می کند. بنابراین از بندهای (الف) و (ب) نتیجه می شود که خط مجانب هذلولی است.
بنابر تقارن، خط نیز مجانب این هذلولی است.
نکته: گاه مجانب را چنان تعریف می کنند که لازم است وقتی ، شیب خم به شیب مجانب نزدیک می شود. این تعریف نیز در این جا صادق است چرا که:
و این همان شیب مجانب است.
معادلات متعارف هذلولی هایی که محورهایشان با محورهای مختصات موازی اند و مرکزشان در (h,k) واقع است:
الف) اگر خط گذرنده از کانون ها موازی با محور باشد:معادله ی هذلولی:
راس ها:
کانون ها:
مجانب ها:
ب) اگر خط گذرنده از کانون ها موازی با محور باشد:
معادله ی هذلولی:
راس ها:
کانون ها:
مجانب ها:
ج) معادلات دو بند فوق را می توان با انتقال و و توجه به این مطلب که معادلات حاصل بر حسب مختصات پریم دار به صورت زیراند به دست آورد:
توجه کنید که در معادله ی مجانب مربوط به بند (I)، بر و در معادله ی مجانب مربوط به بند (II) بر تقسیم می شود.
.: Weblog Themes By Pichak :.